Ia
ia

12
predictions = model.predict(X_test)
model.fit(X_train, y_train, epochs=10, batch_size=32)
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Loss: {loss}, Accuracy: {accuracy}')
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model = keras.Sequential([
layers.Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
layers.Dense(64, activation='relu'),
layers.Dense(1, activation='sigmoid') # Cambia según la naturaleza de tu tarea
])
# Suponiendo que tienes una columna 'target' y el resto son características
X = data.drop('target', axis=1)
y = data['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
data = pd.read_csv('ruta/a/tu/dataset.csv') 01010001001001101010